Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei.
نویسندگان
چکیده
Bacterial symbionts have long been suspected to be the true producers of many drug candidates isolated from marine invertebrates. Sponges, the most important marine source of biologically active natural products, have been frequently hypothesized to contain compounds of bacterial origin. This symbiont hypothesis, however, remained unproven because of a general inability to cultivate the suspected producers. However, we have recently identified an uncultured Pseudomonas sp. symbiont as the most likely producer of the defensive antitumor polyketide pederin in Paederus fuscipes beetles by cloning the putative biosynthesis genes. Here we report closely related genes isolated from the highly complex metagenome of the marine sponge Theonella swinhoei, which is the source of the onnamides and theopederins, a group of polyketides that structurally resemble pederin. Sequence features of the isolated genes clearly indicate that it belongs to a prokaryotic genome and should be responsible for the biosynthesis of almost the entire portion of the polyketide structure that is correlated with antitumor activity. Besides providing further proof for the role of the related beetle symbiont-derived genes, these findings raise intriguing ecological and evolutionary questions and have important general implications for the sustainable production of otherwise inaccessible marine drugs by using biotechnological strategies.
منابع مشابه
Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges.
Numerous marine sponges harbor enormous amounts of as-yet-uncultivated bacteria in their tissues. There is increasing evidence that these symbionts play an important role in the synthesis of protective metabolites, many of which are of great pharmacological interest. In this study, genes for the biosynthesis of polyketides, one of the most important classes of bioactive natural products, were s...
متن کاملAssociated bacterial communities of two deep-water sponges
A combination of approaches was used to examine the bacterial communities associated with 2 deep-water Scleritoderma spp. sponges. Denaturing gradient gel electrophoresis analysis of partial 16S rRNA genes extracted from sponge tissue was used to determine the structure of the sponge-associated bacterial community. Cultivation studies using a variety of marine-based media and medium additions w...
متن کاملSwinholide J, a Potent Cytotoxin from the Marine Sponge Theonella swinhoei
In our ongoing search for new pharmacologically active leads from Solomon organisms, we have examined the sponge Theonella swinhoei. Herein we report the isolation and structure elucidation of swinholide A (1) and one new macrolide, swinholide J (2). Swinholide J is an unprecedented asymmetric 44-membered dilactone with an epoxide functionality in half of the molecule. The structural determinat...
متن کاملExamination of Marine-Based Cultivation of Three Demosponges for Acquiring Bioactive Marine Natural Products
Marine sponges are an extremely rich and important source of natural products. Mariculture is one solution to the so-called "supply problem" that often hampers further studies and development of novel compounds from sponges. We report the extended culture (767 days) at sea in depths of 10 and 20 m of three sponge species: Negombata magnifica, Amphimedon chloros and Theonella swinhoei that produ...
متن کاملDraft Genome Sequence of “Candidatus Synechococcus spongiarum” m9, Binned from a Metagenome of South China Sea Sponge Theonella swinhoei
"Candidatus Synechococcus spongiarum" represents the widespread cyanobacterial symbionts found in marine sponges with relatively high genomic variability and likely important ecological roles. We present here the draft genome sequence of "Candidatus Synechococcus spongiarum" m9, which was assembled from a metagenome of Theonella swinhoei sampled in the South China Sea.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 46 شماره
صفحات -
تاریخ انتشار 2004